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Introduction

General Notion of an Integral of a Function of Two Variables

@ We define a more general notion of an integral of a function
of two variables that will allow us to describe

1. Integrals of arbitrary functions

Functions that are not necessarily
nonnegative or continuous

2. Integrals over arbitrary regions in the plane

Rather than integrals
over rectangles only

@ In case 1. we will see that there is a key connection between
the notion of an iterated integral and a double integral

Fubini's Theorem
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Introduction

Definition 2.1: Partition of a Rectangle

o Consider the (closed) rectangle

R:{(X,y)€R2|a§x§b,c§y§d}

@ We also denote R as
R = [a,b] X [c,d]

@ A partition of R of order n consists of two collections of
partition points

@ This two collections break up R into a union of n?
subrectangles

@ More specifically, for i, j =0,...,n
a = xp<x< <X 1<x<--<x=0b
c = Y<n<- - <ya<y<--<y,=d

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Introduction

Definition 2.1: Partition of a Rectangle

R = |[ab] x[c,d]; Fori,j=0,...,n
a = x<xx<- <X 1<x,<:---<x,=»b
c = yo<n<-<ya<y<---<y,=d

@ Fori,j=0,...,n we denote
Axi =xj —xj—1 and Ay; =y —yj_1

The width and height (respectively)
of the ijth subrectangle
y

d=y, T

Yi +

YVi-1+4+
4
C=YoT

| PR L
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Introduction

Definition 2.2: Riemann sum

@ Suppose that f is any function defined on R = [a, b] x [c, d]
@ Assume we partition R in some way

@ Let c;; be any point in the subrectangle

Rij = [xi—1,xi] X lyj-1,y], i,j=1,...,n

Consider the quantity

n

ij=1

This quantity is called a Riemann sum of f on R
corresponding to the partition

AAj = Ax;Ayj is the area of Rj

Marius A. Marinescu Métodos Matematicos de Bioingenieria 7/59
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Introduction

Definition 2.2: Riemann sum

Rij = [xi—1,xi] % [yj—1, ],

R =

S =

ij=1
@ Case 1: Suppose f happens to be nonnegative on R

[a, b] x [c, d],

ij=1,...,n

D flej)DA;,  DA; = Dxdy;

@ Then, S can be considered to be an approximation to the
volume under the graph of f over R

y

d=y,

Yi A4
Yi-1+
Vi

C=Yo

t
a=x,

Xp Xy e Xj_p Xj e )
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Introduction

Definition 2.2: Riemann sum

R = Ja,b] x[c,d], Rj=[xi—1,x]x yj-1,%], §,j=1,...

S

n
> fley)DA;,  AAj = AxAy;
iJj

@ Case 2: Suppose f is not necessarily nonnegative on R
@ Then, the Riemann sum S is a signed sum of such volumes
(some f(cj) < 0 and other f(c;;) > 0).

z=f(x,y) .

xy-plane f

f<0here.
Volume of this
box enters S
with a — sign.

f> 0 here.
Volume of this
box enters §
with a + sign.

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Introduction

Definition 2.3: Double Integral

@ The double integral of f on R is the limit of the Riemann sum
S as the dimensions Ax; and Ay; of the subrectangles R;; all
approach zero

n

f dA = Ii f . A iA .
//R d all AX‘!ynA‘]yj*)O Zl (CJ) X ,yj

i
@ The double integral is well defined provided that this limit
exists

@ When [ [ f dA exists, we say that f is integrable on R

@ There are different notations for the double integral

//R»fdA://Rf(x’y)dA://Rf(&y) dxdy

Marius A. Marinescu Métodos Matematicos de Bioingenieria 10 /59
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Introduction

Geometric Interpretation: single-variable case

o Consider the case of a single-variable definite integral

/a i F(x) dx

@ From a geometric point of view, it can be used to compute
the net area under the graph of the curve y = f(x)

y

NI

Ay

b
/ f(X) dx = A1 — Ay + A3
a

Marius A. Marinescu Métodos Matematicos de Bioingenieria 11/59
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Introduction

Geometric Interpretation: two-variable case

o Consider the case of a double integral

//RfdA

@ From a geometric point of view, it can be used to compute
the net volume under the graph of z = f(x, y)

Vi

\
\

P \J

(in xy-plane)

//fdAle—Vg
R

Marius A. Marinescu Métodos Matematicos de Bioingenieria 12 /59
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Introduction
Example 2
o Consider the partition R = [-2,2] x [-1,3]

@ We determine the value of

/AXM

@ Here the integrand is

f(x,y)=x
@ The portion of the plane is positioned so that exactly half of it
lies above the xy-plane and half below. =

Marius A. Marinescu Métodos Matematicos de Bioingenieria 13 /59
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Introduction

Example 2

o Consider the partition R = [-2,2] x [-1, 3]

@ We determine the value of

//RjdA

// x dA =0, (the net volume under the graph of z = x)
R

y

Marius A. Marinescu Métodos Matematicos de Bioingenieria 14 /59
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e Consider the partition R = [-2,2] x [-1, 3]

@ We determined the value of

[ [ xda=o

@ In general, it is difficult to use Definition 2.3 in practice to
determine the integrability of a funtion

@ We should be able to calculate the limit of Riemann sums
over all possible partitions

@ The following theorem provides an easy criterion for
integrability

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Introduction

Theorem 2.4

@ If f is continuous on the closed rectangle R, then

//RfdA

Example 2 revisited

e In Example 2, f(x,y) = x is a continuous function

exists

@ Hence, it is integrable by Theorem 2.4

@ The symmetry arguments used in the example then show that

[ [ xda=o

Marius A. Marinescu Métodos Matematicos de Bioingenieria 16 / 59
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Introduction

Piecewise continuous functions: single-variable case

@ Continuous functions are not the only examples of integrable
functions

@ In the case of a function of a single variable, piecewise
continuous functions are also integrable

@ Recall that a function f(x) is piecewise continuous on the
closed interval [a, b] if

o f is bounded on [a, b], and
e It has at most finitely many points of discontinuity on the
interior of [a, b]

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Introduction

Piecewise continuous functions: single-variable case

@ Continuous functions are not the only examples of integrable
functions

@ In the case of a function of a single variable, piecewise
continuous functions are also integrable

@ lIts graph consists of finitely many continuous “chunks”
y

/\/J\‘/_,

f — X
a b

@ For a function of two variables, the following result generalizes
Theorem 2.4 )

Marius A. Marinescu Métodos Matematicos de Bioingenieria 18 /59
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Introduction

Theorem 2.5: two-variable case

@ If f is bounded on R and if the set of discontinuities of f on

R has zero area, then
// f dA
R
exists

RENEIS

@ To say that a set X has zero area means that

o We can cover X with rectangles Ry, R>, ..., Ry, ..., and
e The sum of their areas can be made arbitrarily small

Marius A. Marinescu Métodos Matematicos de Bioingenieria 19 /59
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Introduction

Theorem 2.5: two-variable case

@ If f is bounded on R and if the set of discontinuities of f on
R has zero area, then

f dA
R

exists

N

RENEIS

@ Zero area set:

ol
===l

Discontinuities of f | Discontinuities of f

R

N

Marius A. Marinescu Métodos Matematicos de Bioingenieria 20 /59
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Introduction

Theorem 2.5: two-variable case

@ If f is bounded on R and if the set of discontinuities of f on

exists

@ Theorems 2.4 and 2.5 check that a given integral exists, but
they don't provide the numerical value of the integral

@ To mechanize the evaluation of double integrals, we will use
Fubini's Theorem

Marius A. Marinescu Métodos Matematicos de Bioingenieria 21/59
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Fubini’s Theorem

Fubini's Theorem
@ Let f be bounded on R = [a, b] X [c, d]

@ Assume that the set S of discontinuities of f on R has zero
area.

@ Then,

//RfdA:/ab /Cdf(x,y)dydx:/cd /abf(x,y)dxdy

V.
Remarks

@ Fubini's theorem demonstrates that under certain assumptions

o The double integral over a rectangle can be calculated by using
iterated integrals

o The order of integration for the iterated integral does not
matter

A
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Fubini’s Theorem

Example 3
@ We revisit Example 2, where R = [—2,2] x [-1,3] and
f(x,y)=x
@ By Fubini's theorem, we calculate

//di / /xdydx_/_ (xyyy,_l) dx

:/_ZX( —(—1))dx—/_24xdx— 2x%°, =8 -8=0

@ It is easy to check that also

3 2
//di:/ /xdxdy:O
R —i| J=5

Marius A. Marinescu Métodos Matematicos de Bioingenieria 24 /59
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Fubini’s Theorem

Proposition 2.7: Properties of the Integral

@ Suppose that f and g are both integrable on the closed
rectangle R

1. f + g is also integrable on R and

//R(f+g)dA://RfdA+//RgdA

2. cf is also integrable on R, where ¢ € R is any constant, and

//RcfdA:c//RfdA

@ Properties 1 and 2 are called the linearity properties of the
double integral

Marius A. Marinescu Métodos Matemadticos de Bioingenieria 25/59
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Fubini’s Theorem

Proposition 2.7: Properties of the Integral

@ Suppose that f and g are both integrable on the closed
rectangle R

3. If f(x,y) < g(x,y) for all (x,y) € R, then

//Rf(xm)dAS//Rg(X,y) dA

4. |f] is also integrable on R and

‘//RfdA‘<//R|f|dA

@ Property 3 is known as monotonicity.

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Elementary Regions

@ We would like to understand how to define the integral of a
function over an arbitrary bounded region D in the plane

//DfdA

o Ideally, we would like to give a precise definition when D is
the amoeba-shaped blob shown in figure:
y

=

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Elementary Regions

o

@ Unfortunately, this is not possible with the techniques studied
so far.

@ Instead, we shall consider only certain special regions.

@ And we shall assume that the integrand f is continuous over
the region of integration.

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Definition 2.8

@ D is an elementary region in the plane if it can be described
as a subset of R? of one of the following three types:

e Typel
D ={(xy) |v(x) <y <d(x),a< x < b},

where v and ¢ are continuous on [a, b]

y

D y=46(x)

S ) *

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Definition 2.8

@ D is an elementary region in the plane if it can be described
as a subset of R? of one of the following three types:

e Type 2

D={(x,y) | aly) <x<B(y),c <y <d},

where « and f3 are continuous on [c, d|

y
y=d
x=p()
x=o(y)
X
\_JD
y=c
Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Definition 2.8

@ D is an elementary region in the plane if it can be described
as a subset of R? of one of the following three types:

e Type 3: the regions D that can be described as both type 1
and type 2 regions.
y Yy

y=d
D y=06(x) x=B(y)
x=b x=a()

— =1 ! YL /»

y=c¢

Marius A. Marinescu Métodos Matematicos de Bioingenieria 32/59
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Elementary Regions

Definition 2.8

D y=08(x)

— P y=1x

A

RENEIS

@ A type 1 elementary region D has a boundary 0D consisting
of

o Straight segments (possibly single points) on the left and on
the right, and

e Graphs of continuous functions of x on the top and on the
bottom

Marius A. Marinescu Métodos Matematicos de Bioingenieria 33/59
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Elementary Regions

Definition 2.8
y
y=d
x=p)
x=o(y)
X
/b
y=c
Remarks
@ A type 2 elementary region D has a boundary 9D that is
e Straight on the top and bottom, and
o Consists of graphs of continuous functions of y on the left and
right

A\

Marius A. Marinescu Métodos Matematicos de Bioingenieria 34 /59
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Elementary Regions

Example 4
o Consider the unit disk D = {(x,y) | x>+ y2 < 1}
y

@ It is an example of a type 3 elementary region

Marius A. Marinescu Métodos Matematicos de Bioingenieria 35/59
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Elementary Regions

Example 4
o Consider the unit disk D = {(x,y) | x>+ y? < 1}

@ It is a type 1 region since

D={(xy)| —VI-x2<y<VIi—x —1<x<1}

)|}
| y=Vl-x2 |
| |
I I
| |
| I
X
x:71: :le
I I
| |
I I
I I
y=—A1-x2 :

Marius A. Marinescu Métodos Matematicos de Bioingenieria 36 /59
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Elementary Regions

Example 4

o Consider the unit disk D = {(x,y) | x>+ y2 < 1}

@ It is also a type 2 region since

D={(xy)| —V1—-y2<x<+y1-y?2 —1<y<1}

Marius A. Marinescu Métodos Matematicos de Bioingenieria 37/59
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Elementary Regions

Definition 2.9
@ Consider the double integral

//DfdA

@ Assume D is an elementary region and f is continuous on D

@ We construct a new function £ the extension of f, by

fext(x y): f(Xay) If (Xu.y)e D
’ 0 if (x,y) ¢ D
z y
) R
’'A L~
N
y
x 44—4: ~ij/JZ=f“%xy)
Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Definition 2.9

y

;=

y
o <
( (

X 4 __d // z=f(x, y)

@ We construct a new function £, the extension of f , by

f(x,y) if(x,y) €D
0 if (x,y) ¢ D
o Note that, in general, £ will not be continuous

f'eXt(X’ y) —

@ But the discontinuities of f&t will all be contained in 9D,
which has no area

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Definition 2.9

z y
R

5\\,/ o > |

y
X / j fex(x, ",)

z=

@ We construct a new function £, the extension of f , by

f(x,y) if(x,y)eD
0 if (x,y)¢ D

@ Hence, by Theorem 2.5, f®* is integrable on any closed
rectangle R that contains D

f‘EXt(X’ y) —

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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M, =
/77%

@ Under the previous assumptions and notation, if R is any
rectangle that contains D, we define

//DfdA://RfexfdA

Marius A. Marinescu Métodos Matematicos de Bioingenieria 41/59
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Elementary Regions

Theorem 2.10

@ Let D be an elementary region in R? and f a continuous
function on D

1. If D is of type 1, then

b &(x)
// fdA:/ / f(x, y)dydx
D a Jy(x)

2. If D is of type 2, then

[ [ rea- // F(x, y)dxdy

@ Theorem 2.10 provides an explicit way to evaluate double
integrals over elementary regions using iterated integrals

N,

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Example 5

@ Let D be the region bounded by the y-axis and the parabolas
y:3x27 y:4—x2

y
y=3x?

DR(1,3)

y=4-x2

2.0
@ Note that the parabolas intersect at the point (1, 3)

@ Since D is a type 1 elementary region, we may use Theorem
2.10 with f(x,y) = x2y

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Example 5

@ Let D be the region bounded by the y-axis and the parabolas
y=3x% y=4-—x°

y
y=3x?

D*(1,3)

y=4-x2

(2.0)

//xydA / / xzydydx
3x2

@ The limits for the first (inside) integration come from the
y-values of the top and bottom boundary curves of D

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Example 5

@ Let D be the region bounded by the y-axis and the parabolas
y=3x% y=4-—x°

y
y=3x?

D*(1,3)

y=4-x2

(2.0)

1 4—x2
// x2y dA:/ / x2y dydx
D 0 J3x2

@ The limits for second (outside) integration are the constant
x-values corresponding to the straight left and right sides of D

<

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Example 5

@ Let D be the region bounded by the y-axis and the parabolas
y:3x27 y:4—x2

@ Then,

1 p4—x2 1 20,2
//Xzy dA:// X2y dde:/ (”)
D 0 3x2 0 2
1X2 2\ 2 2\ 2
:/02<(4—X)—(3X))dx

1 1
= 1 / x? (16 —8x3 4+ x4 — 9x4) dx = / (8x2 —4x* — 4X6) dx
0 0

y=4—x>
dx

y=3x2

2
8 4 4 136

Marius A. Marinescu Métodos Matematicos de Bioingenieria 46 /59
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Elementary Regions

Example 6
@ Let D be the region having a triangular border shown in figure
y
0.1
x+y=1
D
(0,0) (1,0)

@ We calculate

| [a=x=yyan

@ Note that D is a type 3 elementary region, so there should be
two ways to evaluate the double integral

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Example 6

@ Let us consider D as a type 1 elementary region

@ Then, we can apply part 1. of Theorem 2.10

//D(l—x—y)dA:/o1 /le(l—x—y)dydx

Marius A. Marinescu Métodos Matemadticos de Bioingenieria 48 /59
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Elementary Regions

Example 6

@ Then, we can apply part 1. of Theorem 2.10

//D(lxy)dA _ /Ol/ol_x(lxy)dydx
2\ [Y=1=x
= [ -2l

_ /01((1—x)—(1—x)—(1_2x)2>dx

1(1—x)? 1 1o
/0 Rl R

@ We could obtain the same result considering D as a type 2
elementary region

Marius A. Marinescu Métodos Matematicos de Bioingenieria 49 /59
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Elementary Regions

Example 6

@ Thus, we have obtained

[fa-r-no -}

@ It represents the volume under the graphof z=1—x—y
over the triangular region D
y z

(0,0,1)

0.1 z=1-x-y

x+y=1

(0,0) L0 Y

7 (1,0,0)
@ This double integral represents the volume of a tetrahedron

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Example 7
@ Let D be the annular region between the two concentric
circles of radius 1 and 2 shown in figure

y

@ Then, D is not an elementary region
@ But we can break D up into four subregions that are of
elementary type

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Example 7

x2+y?=4

(3,1 D W3, 1)

x24y2=1 D,

N

D,
(-3, -1) p, /63 -1

b\‘
=
=

o If f(x,y) is any function of two variables that is continuous
(hence integrable) on D, then

J/)u/p f dA = J/P f dA + u/p f dA + d/” f dA + d/P f dA
D Dy D D3 Dy

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Example 7

@ For the type 1 subregions
1 y 1
| v = V4=
B | N\
l/: ~ \\\y:1:‘
R AT
\\:y ,T\\ /// :»,I
: D3 iX:V?
y::—v4—x2 i
V3 4—x2
// fdA = / / f(x,y)dydx
Dy V3 J1
V3 -1
/ fdA = / / f(x,y)dydx
D3 V3 J—/4=x2

Marius A. Marinescu
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Elementary Regions

Example 7

@ For the type 2 subregions

x=nTp

//szdA - / /m (x, y)dxdy
//D4fdA - // F(x, y)dxdy

Marius A. Marinescu Métodos Matematicos de Bioingenieria 54 /59
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Elementary Regions

Example 8

@ Consider the region D bounded by the line x — y = 0 and the
parabola x = y? — 2

@ We calculate

JURZL

@ In this case D is a type 2 elementary region

@ The left and right boundary curves may be expressed as
x = y? — 2 and x = y, respectively

Marius A. Marinescu Métodos Matematicos de Bioingenieria 55 /59
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Elementary Regions

Example 8

@ Consider the region D bounded by the line x — y = 0 and the
parabola x = y? — 2

-1

@ In this case D is a type 2 elementary region
@ The left and right boundary curves may be expressed as
x = y? — 2 and x = y, respectively

@ These curves intersect where

y2—2:y <— y2—y—2:O — y=-1,2

Marius A. Marinescu Métodos Matemdticos de Bioingenieria
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Elementary Regions

Example 8

o Consider the region D bounded by the line x — y = 0 and the
parabola x = y? — 2

@ Therefore, part 2. of Theorem 2.10 applies to give
2 y
// y dA = / / y dxdy
D -1 Jy2-2

Marius A. Marinescu Métodos Matematicos de Bioingenieria 57 /59
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Elementary Regions

Example 8

@ Therefore, part 2. of Theorem 2.10 applies to give

2 y 2 —2_ o
[[van = [ [ yaa= [ or 2
D -1 y2—2 -1
2

3 4
Yy Yy
~1

8 1 1 9
(3-4+4)- (-5-3+1) -3

y=2

y=-1

Marius A. Marinescu Métodos Matematicos de Bioingenieria 58 /59



Double Integrals
000000000000 00000000000000000000000000000000000000000000e

Elementary Regions

Example 8

@ Note that D may be divided into two type 1 subregions along
the vertical line x = —1
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